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Continuum Field Model of Driven Lattice Gases
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We define a soft-spins approach to the driven lattice gas model (C-DLG) at the
level of a master equation. As a result, we obtain a Langevin equation for the
C-DLG which depends on the microscopic transition probabilities. We then
show how this dependence affects the critical behavior of the the C-DLG,
placing the finite- and the infinite-driving-field cases into different universality
classes. In the same vein, we propose a continuum description of two other well-
known anisotropic, conservative, nonequilibrium models: the two-temperature
model (C-TT) and the randomly driven model (C-RDLG). We show that the
C-RDLG with infinite averaged field and the C-TT with 7, = co fall in the same
universality class as the infinitely driven C-DLG. A Langevin equation for the
driven bilayer lattice gas model is also presented.

KEY WORDS: Nonequilibrium systems; driven lattice gases; Langevin equa-
tions.

1. INTRODUCTION

Equilibrium statistical mechanics has succeeded in predicting the collective
behaviour of a system in thermal equilibrium given the laws governing its
microscopic behaviour. But most natural phenomena belong to the field of
non-equilibrium statistical mechanics, a subject far less well understood and
still in its developing stage. Being overwhelmed by the enormous com-
plexity of non-equilibrium systems, it is expedient to focus on those which
settle into non-equilibrium steady states and to trace its behaviour to
specific model ingredients. Then, results pertaining to collective behaviour
can be obtained by several methods. For instance, Monte Carlo simulations
in which a great deal of our understanding of the large scale properties
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of a system is based and also serve to test predictions based on other
approaches. Mean field theories, the usual starting point of the analytic
route, can provide us with some insight into the phase diagram, but they
fail to describe the true collective behaviour properly, specially in systems
with local interactions in low dimensionalities. Further analytical develop-
ments are seriously hampered by, among other things, the (commonly) dis-
crete structure of the system, so to describe the physics at the macroscopic
level a new avenue is required. To accomplish this goal one can benefit
from the mesoscopic approach in terms of Langevin equations, which con-
centrates on the long-time, large-distance properties and tries to eliminate
the lattice altogether, by making the order parameter into a continuous
field. This mesoscopic picture can be derived, at least in principle, starting
from the microscopic master equation and implementing a coarse graining
procedure, but in practice this route proves to be an insurmountable task
for most systems. This predicament is usually overcome by postulating
phenomenological equations based on the choice of an order parameter
and the underlying system symmetries. When equilibrium critical phenomena
are considered, one can then appeal to the framework of the renormalization
group, and universality then appears in the sense that the results are inde-
pendent of the microscopic details, in particular the microscopic dynamic
rules.” But non-equilibrium critical phenomena is still a challenging
matter which displays striking features.”® More specifically, in contrast to
equilibrium, in non-equilibrium situations the transition rates are not a
simply matter of convenience. The observable critical behaviour can
depend on some details of the microscopic dynamics, a fact which is often
underestimated in the literature. An analysis concluding about the relevant
features that characterize the universal properties of a non-equilibrium
system at criticallity is still lacking.

This paper is devoted to continuum description of the driven lattice
gas (DLG henceforth) model and other related models. First devised by
Katz, Lebowitz and Spohn,® the DLG is a kinetic lattice gas of interacting
particles subject to an external uniform field. A more detailed description
of the DLG will be presented in the second section of this paper, but for
the time being let us remark that various generalizations of the DLG have
been argued to be relevant to the understanding of a wealth of varietes of
natural phenomena (see ref. 2 for a review). On the theoretical front, the
DLG is one of the simplest non-equilibrium models that is hoped to serve
as a paradigm for the behaviour of those systems which do not posses a
thermodynamic equilibrium state. It also seems to capture the essence of
strongly anisotropic systems. Despite the utterly simple specifications of the
DLG, it displays far from trivial behaviour. To our belief open questions
abound and new inroads on this subject are needed. So, seeking a new
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framework for answers, we propose a new continuum approach whose
preliminary results were presented in ref. 4.

The remainder of this paper is organized as follows: In the first part
of Section 2 we briefly summarize the basic ingredients of the DLG. We
then give our derivation of a Fokker—Planck equation for a soft-spins
approach to the DLG and its stochastically equivalent Langevin equation.
In Section 3 the continuous counterparts of the two-temperature model,
the Randomly Driven Lattice Gas and the multilayer variant of the DLG
are studied employing the formalism of Section 2. Our concluding remarks
are in Section 4.

2. FROM DRIVEN LATTICE GASES TO DRIVEN DIFFUSIVE
SYSTEMS

Consider a set of particles confined to a box, 4= Z% with periodic
boundary conditions. A configuration of this system is specified by giving
all the site occupation variables, n, =1, 0, reflecting the fact that a particle
may be present or not at site x. Besides this hard-core constraint, the
model also includes a nearest-neighbour (NN) interaction so, given a con-
figuration C={n,},.,, the Hamiltonian reads

H(C)=—J ) nyn, (1)

NN

The configurations C evolve according to a stochastic hopping dynamics
which conserves the number of particles, or equivalently the density o. Up
to the present, all we have is the familiar kinetic lattice gas‘® for which the
following master equation for the time evolution of the probability distribu-
tion P,(C) applies

0.P(C)=} {W[C' > CIP(C)—W[C—C']P,(C)} (2)
<

Here, W[ C— C'] stands for the rate at which the system makes a transi-
tion from C to C’, and C and C’ can differ by a single nearest-neighbour
particle-hole exchange. The choice of W[ C— C'] = D(f4H), where D is
any function satisfying D(—x)=e*D(x) and 4H= H(C")— H(C), ensures
that the stationary solution of (2) is the equilibrium one, ie., P(C) oc
e PHO and B=1/T is the inverse of the temperature of the thermal bath.

Next, let us introduce a uniform (in both space and time) external
drive E pointing along one of the principal axis of the lattice. We refer to
it as the electric field while imagining that the particles behave as positive



306 de los Santos and Garrido

ions only in relation to it. The field biases the rates favouring jumps along
its direction, suppressing jumps against it, and leaving unaffected those in
the tranverse directions. For hard wall boundary conditions the only effect
of the drive would be to add a gravitational potential energy to the
Hamiltonian (1), and the resulting steady state would be an equilibrium
one. But due to the periodic boundary conditions, the drive has a dramati-
cal effect on the system static properties, preventing the system from
achieving an equilibrium stationary state. In this case, the electric force is
nonconservative so it is not derivable from a global potential. However, the
local effect of the drive could be mirrored by adding to the Hamiltonian (1)
the work done by the field during the jump, so we choose the rates in the
form

W[C— C']=D(BAH + B/E) (3)

where 7/ =(1,0, —1) for jumps (against, transverse to, along) E, and E is
the strength of the electric field (E= |E|). When E=0, one recovers the
familiar equilibrium rates.

Let us end this résumé of the main features of the DLG (see refs. 2 and
6 for fairly detailed reviews) with a few words on its collective behaviour.
At half-filling (¢ =0.5) and E=0, a second order phase transition at the
Onsager critical temperature, 7, is known to occur in two dimensions. For
E#0 and still at half-filled lattice, from the gleanings provided by Monte
Carlo simulations, the DLG undergoes a second order phase transition at
a higher critical temperature, 7', saturating at about 7(*) =14T, for
E — oo. The main observation is that for temperatures above 7% the par-
ticles are distributed homogeneously while below 7 the DLG segregates
into a particle-poor phase and a particle-rich region, the latter having
domain walls parallel to the field.

2.1. The C-DLG: Soft-Spins Approach to the DLG

In this paper we are mainly concerned with the continuum field
description of the DLG, so firstly we aim at making the order parameter
into a continuous field. To serve this purpose, let us define a coarse-grained
excess particle density field, ¢(r, ¢), with re 79 and where T¢ is a d-dimen-
sional torus. We adopt the usual Landau-Ginzburg form as a suited
Hamiltonian analogue to the internal energy (1), that is

1
H(C):deddx[2(V¢)2+;¢2+i¢4 (4)
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where C here stands for a given ¢ configuration. This assumption is very
much in the spirit of the soft-spins approach to the Ising model, where the
field can fluctuate around two maxima. As for the occurrence of the factor
Q%1in H(C), it can be argued that in a naive continuum limit the field ¢(r)
is defined as an average over the occupation variables in a region around
r containing Q¢ lattice sites. The factor Q¢ is then a remnant of a coarse
graining over the underlying lattice.

Now, we postulate the time evolution of our model system by
associating a time dependent statistical weight with each configuration,
P,(C), which evolves in time accordingly to the following master equation

0,PACI=Y| dnfin) [delW[CT™ €] P(CT™)— W[C— C™] P(C)}

‘ (5)
Here, C" is defined as
CT = {(x) + 12V, (X 1)} xerd (6)

the label a stands for the a direction and f(#) is an even function of #.
Before continuing to prescribe the exchange rates W[C— C'], let us
digress briefly to mention that, in general, there does not exist a rigorous
connection between the microscopic and the mesoscopic description of a
system. For instance, the continuous equivalent to the discrete exchange
evolution mechanism would be some kind of infinitesimal-exchange term
whose precise form is unknown. Thus, seeking a wider context we intro-
duce the variable # and its probability distribution f(#) in an attemp to
cover a wider range of situations.
Lastly, we choose the transition rates W[ C — C’'] such that

W[C— C™]=DH(C"™)—H(C)+ Hg(C— C"™)) (7)
with
Hy(C— C™)=na-E(1—¢(r)%) + O(e) (8)

where ¢ = Q™% This means that the transition rates depend on the energy
difference between configurations plus a term whose dominant part in ¢ is
the natural choice to mirror the effects of the drive as far as it accounts for
the local increment of energy due to the driving field. Correcting terms of
higher order in ¢ will be fixed later. Again, as in the DLG case described
above, in absence of the drive the system stationary state is the equilibrium
one characterized by the ¢* Hamiltonian (4).
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We shall name the model we have just defined C-DLG, for it is
intended to be a continuum counterpart of the DLG.

2.2. From Fokker-Planck to Langevin

The next step we take is to get a Fokker—Planck equation by expanding
the Master equation in ¢ up to &2 order. To keep matters simple, we will
consider £=0 for the moment. We will recover the E #0 case later on.

We avail ourselves of the results collected in Appendix A to expand
H(C") and P,(C") around C. The Master equation transforms into

0PACV= [drdfi) {(D(~at)~ DLat) P(C)

a

o) _ n P n
py o) <V,¢,5 )> P,(C)D(AH)} 9)

o o(r

where
AH =n) —17—28 \Y% i Sy + O(e%) (10)
_’7"11 2 r, 5¢ a
with
oH
Ae=—V, —— 11
* 59(1) ()

We would like to stress that A, is of order one rather than order .
This is due to the factor ¢ in (4) which ensues that our expansion of D
is not around zero. This assurance is of the most importance because it
bestows dependence upon the dynamics on Eq. (10). Otherwise we would
have found a very different story: our expansion would have resulted in a
simple Model B where any dependence on the dynamics would have
vanished. Recalling again the results of Appendix A and noticing that much
simplification is obtained because of the integration of odd terms in #, one
is led to

0,P(C)=Y [dr <V,a ¢(i)> {eh(/la) P(C)+
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where

W)= | dnfin)nD(ni,)

(13)
elia) =] dnfn)n*Dind,)
Turning our focus to the £ # 0 case, let us choose Hy in (8) as
© gl ! i
(—¢) < 5>
nray __ (E) (E) 14
Hy(C— C"™) =5l +1§1 TESY Va5¢ A (14)

with 25) =a . E(1 — ¢(r)?). We stress that Hz(C — C"™) = — Hz(C"™ - C),
i.e., Hy can be considered as a local increment of energy (although, of
course, a global potential energy cannot be defined) and local detailed
balance in (7) holds. The point of these manouevres is that the Kramers
Moyal expansion is now trivial. That is, one should only substitute in (12)
and (13) 4, by 4,=4,+ A% So, this election allows us to write

0= ar (v, g o pacr+5 e (v, 505 ) Pic)]

(15)

We have just derived a Fokker—Planck for the C-DLG. Now, we
proceed to find out its stochastically equivalent Langevin equation. We
shall invoke the main result of Appendix B in virtue of which the Fokker—
Planck equation

=3 Jar (V. 50

1
x {fawﬂ; 0 PAC)H (Ve g | &0 PACY, (16)

o
" 3¢ (r)

is equivalent to the Langevin equation

d
0,9 Z Vo LSl dir) + gu(ds ) L(r, 1)] (17)
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using the Ito prescription and with {,(r, ) being a gaussian white noise,
te, <, (r,1)>=0 and <, (r, 1) (x', 1)) =0, o0(t—1)o(r—r"). Then,
relating to our case, it is straightforward to get

0,(r, 1) =3 V [h(A,) +e(4,)"? L (r, 1)] (18)

where, time has been rescaled by a factor ¢, and finally ¢ has been set to
1 since no more perturbative expansions in ¢ are going to be considered.
Before we proceed further, several comments are in order. First, the
basic symmetries of the DLG are present in the Langevin Eq. (18): it is
invariant under the simultaneous change £ — — E and ¢ »> — ¢, and it is also
invariant under translations in space and time. But the central hallmark is
that it depends strongly upon the dynamics. We believe this is a real step
forward, if only because it goes beyond phenomenological approaches.
Gratifyingly, we shall see shortly how to exploit this new state of affairs.

2.3. Power Counting

We focus on the critical region where large fluctuations on all length
scales dominate. Further simplification in (18) is possible in this regimen
by dropping the irrelevants terms in the renormalization group sense.
Following the standard field theoretic methods let us introduce an external
momentum scale 4 and make the following anisotropic scale transforma-
tions: t > u =%t ry > u"'r,, 1> u "%, and ¢ > u°p, where | stands for
the direction parallel to the driving field E, and L for those perpendicular
to it. As usual, the noise scales as {, —» u©+9+o=12¢ Next, we expand the
Langevin equation in powers of x around x =0, keeping only the leading
terms. The time scale, the transverse noise, and the transverse spatial inter-
action are forced to remain invariant under the transformation. With this
understood the values of z and d can be determined. One gets z=4 and
0=(0+d—3)/2. Different scenarios are now possible depending on the
value of ¢. Demanding that the coefficients of V4 and V7 scale in the same
way, as in the standard analysis of the critical behaviour of the DLG,®
would lead to the choice 0 =2. We show the most representative terms

e(0) B B orde
0=~ 10410720, 809~ ed g S

+hr(E)[lu2¢7+2AJ-A”¢ +ﬂ4¢774A|2|¢ _Iu2z774.L.AI|¢
—ﬂ3a+d_7A”¢3—ﬂ(3G+d_11)/2EV”¢2]

+e(0)2Y V. (, +#a_1e(E)l/2V||§|| (19)
L
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which after setting ¢ =2 and taking the limit 4 — 0, assuming d > 3, gives
2 g 3
Al¢+mL¢+6Al¢
—th'(E) Vii¢— EN(E) V¢*+/e(0) ), V. {i(r)  (20)
1

h' is the first derivative of the function /(A4,), closely related to the first
derivative of the transition rate D.

Let us take a glance at the structure of Eq.(20). It can be easily
checked that all we have is the Langevin equation postulated by Leung and
Cardy for the DLG and which is often known as driven diffusive system.
But in stark contrast to ref. 9, Eq. (20) displays the precise form in which
the microscopic field enters the mesoscopic picture of the DLG. More
precisely, the two different critical temperatures introduced by Leung and
Cardy for longitudinal and transverse ordering are indentified here as
th'(E) and 7 respectively, while the mesoscopic version of the field E finds
its counterpart in FEA'(E). Originally, it-was assumed that an infinite
microscopic electric field implied a finite non-zero coarse grained driving
field.® In Eq. (20) we show explicitely that this is not the case. In fact, it
happens there that when E= oo the driving term disappears. We believe
that this is the reason of the mismatch between the simulational results and
the analysis of the Langevin Eq. (20). The latter is not suited for com-
parison with computer simulations because these are always performed
with infinite drive and in Eq. (20) a finite non-zero driving term is present.
Let us take the calculation a stage further by setting E to infinity in (20).
Then, all the terms depending on the electric field £ become identically
zero. This fact can be casily checked, irrespective of the equation con-
sidered, (18) before power counting or (20) after rescaling. So, (20) sim-
plifies to

00 =5(0)| ~a3prca g Ea g+ OV @D

The latter equation constitutes a simple model B! in the transverse
directions and no structure in the parallel one. Thus, the scaling o =2 for
E = oo leads to a trivial behaviour. Furthermore, one realizes that imposing
V4 and V|2| to scale in the same way is meaningless because there is no
parallel gradient term appearing in the Langevin equation. Nevertheless,
we have the freedom to choose ¢ to look for different critical theories.
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A natural choice is ¢ = 1. With this election, an equation analogue to (19)
can be written down, however much more involved:

0
0.9 = _% {Ai‘ﬁ + A Ay —u e -t §Al¢3]

'h,(E){AJ_AH(ﬁ +A|2|¢—,U—2TA||¢—ﬂd_4 %Z’H(ﬁ3 —ﬂ(d_s)/zEVHﬁbz}

2
+h/r(E)|:”(d—4)/2T2V”(V”¢)2 +ﬂd_4 gTEAII¢3 +ﬂ3(d_4)/2E2V”¢4:|

n E
—uBa-10rE? WUE) é )V||¢6+e(0)1/22V¢C¢+6(E)1/2V||C|| (22)
1

In particular, for £ =0 one recovers the equilibrium theory (model B). For
finite E, the critical dimension is d,=8 but some of the irrelevant terms
might be taken into account below the critical temperature. When E = oo
we get a much more simple equation:

1
0,1 =7(0) —ALA||¢—A1¢+TAL¢+§AL¢3}

e(0)

+/e(0)Y. V. {i(r )+ TV”C”(r, t) (23)
L

This equation is the central result of this work. We now proceed to discuss
its physical implications. To begin with, Eq.(23) is structureless in the
parallel direction. So, it corresponds to a lattice gas in which particles are
exchanged at random in the direction of the field while jumps in the trans-
verse directions are subject to energetics. The most obvious distinction
between the finite E case and the infinite one lies in the steady-state current
term. This does not appear in (23). Of course, such a current exists but it
has no bearing on critical properties. Thus, Eq. (23) does not gather it.

It is quite surprising to find that, for infinite driving field, the Langevin
equation changes dramatically when compared to the one that charac-
terizes the finite E case. This would have been difficult to work out only on
symmetry grounds. Also remarkable is the lack of Galilean invariance and
the emergence of a single correlation length (cf. ref. 8). Anticipating renor-
malization (the computation of the critical exponents will be presented
elsewhere), we should remark that the upper critical dimension is now
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d.=4 and it yields a distinct universality class from that obtained for finite
fields. Therefore, a value of f different from 1/2 is expected.

We wish to remark that Eq. (23) is renormalizable when E = oo, while
for finite values of the field it can be seen that it is not easily renormalizable
due to a plethora of dangerous irrelevant operators. Presumably, a strong
crossover from our theory to the finite E case occurs for very long
impressed fields which obscures the interpretation of Monte Carlo data.
This is borne out by the following mean field analysis of the steady-state
structure factor which for d>8 and any E is equal to

K2+ (e(E)/e(0) k1

S ) = o B et K K+ 7

(24)

Of course, for E=0 one recovers the usual form (k*+17)~'. Since /'(E) is
an exponentially decreasing function of E, S(k_ , k) will rapidly adopt the
form of the E= oo structure factor, namely

k% + k7 /2

Sk, ky) =755 —
ko k=2 670y

(25)

This leads us to the conclusion that correlations behave effectively as in the
infinitely driven case even for not very large values of the electric field.
A similar, but smoother, crossover occurs between the equilibrium and E
finite cases.

Finally, we comment that other choices for Hp, the term responible
for the drift effects in the transition rates (8), are also possible. For
instance, H;=na-E(1 —¢?)+ O(¢*), but the corrections will turn out to
be irrelevant for universal properties. The election Hz=na-E would lead
to (23) again for E = co, while for finite values of the electric field a new
Langevin equation emerges. However, qualitative differences always exist
between the infinite and finite E cases.

3. RELATED MODELS

3.1. Two-Temperature Model

In this subsection we consider a model closely related to the DLG.
The two-temperature Ising lattice gas® consists of a set of particles
endowed with an Ising Hamiltonian and lying on a hypercubical d-dimen-
sional lattice. In contrast to the usual kinetic lattice gas, particle-hole
exchanges are controlled by rates with different temperatures according to
the following rules: if the vector a pointing from the particle to the hole lies
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in an n-dimensional subspace, the “parallel” subspace to say, then a transi-
tion rate of the form D(4H/T))) is at play. On the other hand if a belongs
to the “transverse” space then the exchanges are coupled to a bath with
temperature T, .

We now proceed to build a continuum theory for the two-temperature
model. Let us start with the master equation in continuous space (5).
Now W[C— C']=D(H(C'")— H(C)) where H(C) is the usual ¢-four
hamiltonian (4) but it depends on a that the coefficient 7 of ¢2/2 will adopt
different values. That is, t=7, if a lies in the transverse subspace and
7 =1, otherwise. Being initially interested in the 7|, — oo case, we shall
assume that particle-hole exchanges in the parallel subspace are subject to

H=0 jd $2(x) (26)

We shall call the model so furnished continuous two-temperature model,
from now on C-TT model. So, it is expedient to separate (5) into two parts,
the first being a sum over the transverse subspace and the second over the
parallel one. Next, we follow the same steps as in Section 2.2, i.e., an expan-
sion of 4H and P,(C") around C. The calculation is straigtforward, for
the (simbollicaly) a € L case leads to the same result as in Section 2.2 and
when a e | one simply gets 4H= —yt)V, ¢. Then the following Fokker—
Planck equation can be easily computed

P(C)= 3 | dr< o s Vet PCI+ S et (V. 50 P

ae L
5 2
+ e(t, 4, < > P,(C 27
agl\ j 14 Ve, o¢(r) ) (27)
and in the limiting case 7, — oo its equivalent Langevin equation reads
0,9 =Y V.[h(l,)+e(2 B rz]—i—” ZV {a (28)
ae L ae|

Finally, we restrict ourselves to a 1-dimensional parallel subspace. A naive
dimensional analysis yields, after dropping irrelevant terms and assuming
g=1, the same equation we found for the C-DLG at criticallity with
E = 0. That is, the C-DLG with E= oo and the C-TT model with 7| = co
are members of the same universality class. To illustrate this connection
further, let us consider our continuum version of the DLG with infinite
drift. As we saw in the previous section this corresponds to completely
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random particle hops in the field direction. Then we note that the same
picture arises if we choose 7= .

No adiditional effort is necessary to study the finite 7 case. We again
seperate (5) into two parts, but now we take the full expression for the
Hamiltonian (4) rather than (26). A derivation running along the same
lines of the previous subsection is possible. We only remind that the scaling
z=4, 0=1 and 0=(d—2)/2 is used in the power counting procedure
which entails

e(0)

0= A2¢+(TLAL+1”A”)¢+%A¢3 + /0 YV, L) (29)

Despite of the fact that anisotropy is only present as far as the masses are
concerned, we should remark that more general anisotropies could be
expected. Then, the collective behaviour of the C-TT model with finite 77,
could be more adequately predicted by means of an extension of (29) to an
equation with full anisotropy in the coefficients.

3.2. Randomly Driven Lattice Gases

Here we take up an extension of the DLG, the randomly driven lattice
gas (RDLG hereafter).!? Let us consider a DLG in which the driving field
fluctuates accordingly to an even distribution p[ E(x, ¢t)] which is J-cor-
related in space and time. The RDLG is easier to realize in the laboratory
than the DLG and one can also benefit from a higher analytical simplicity
because a random drive induces no steady-state current and the particle-
hole symmetry is preserved. Like the DLG, it exhibits a second order phase
transition at half filling from a disordered state to striplike order. There is
hardly any difference between typical ordered configurations associated
with the DLG with an infinite drive imposed, the two-temperature model
and the randomly driven model. Now, to provide a better comparison we
put forward a continuum equation for the RDLG. Following our criterion
for notation, we shall name the resulting model C-RDLG. Our starting
point is again equation (5) with the prescriptions (7) and (8). We should
then average over a random E, but we can defer such an average to a later
stage. First, we repeat the steps we performed to arrive at a Langevin equa-
tion for the DLG. All results carry over without change until we face to
averages over E in (22) of the type E™h"(E) and ./e(E). As a consequence
of a symmetric p[ E(x, t)] and the integrations over #, the averages with
m+ n being an even integer vanish whilst the remainder terms will yield the
following finite values:



316 de los Santos and Garrido

7= [dE pLE1H'(E)

7= | dE pLE] EW'(E) (30)

72= [ dE pLE] /e(E)
The Langevin equation can then be written down in the form

0) e(0 e(0
0=~ %Aiqﬁﬂlz! ¢+<V1 (2)>A 4,9+ *)TAM w14

0
+%§AL¢3 T(y 2*3’1)A||¢3+MZVLQ+?3V”C” (3D

We have arrived at an entirely anisotropic equation, i.e., all the gradient
operators have been split into components parallel and transverse to E. In
accordance with our earlier discussion of the C-TT model, we conclude
that the C-RDLG and the C-TT model with finite 7}, share the same criti-
cal behaviour. But we caution that, as in the C-DLG, in the C-RDLG two
cases have to be distinguished. We can think of the simplest distribution
p[E], namely the bimodal i[J(E+ E,) +Jd(E—E,)], and then take the
limit £, — co. Not surprisingly, in this limit y,=0, i=1,2,3, and the
Langevin Eq. (23) associated with the infinitely driven C-DLG emerges
again. We therefore can conclude that the generical critical properties of
the C-TT model with T, = oo, the C-DLG with E set to infinity and the
C-RDLG driven with an effectively infinite field are indistinguishable.

3.3. Layered Driven Lattices Gases

We turn our attention to a generalization of the DLG.!® Let us con-
sider a pair of identical square lattices placed back to back. Each plane is
a copy of a two dimensional DLG. No inter-layer coupling is allowed, but
particles can hop from one plane to their “nearest neighbour” site in the
other one. This process is controlled by in-plane energetics alone and it
is not affected by the drive. The overall particle density is fixed at 1/2.
Concerning the nature of the phase transition, Monte Carlo data (E= o0)
have revealed that intriguinly two transitions appear.(!* Here, we just give
the gist of references* !> where the phase diagram in the (E, T')-plane has
been mapped out employing Monte Carlo simulations and dynamic mean-
field theory. As T is lowered the system first orders from a homogeneous
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state into a state with strips in both layers. This transition is observed to
be characterized by the same critical indexes as the DLG. Decreasing T
further, we reach the second transition where homogeneous layers with dif-
ferent density appear. This transition belongs to the Ising universality class
for any E < E,~2, while values of E beyond the threshold field E, lead to
a first order phase transition.!¥

Although physical motivations for this model come from various
directions,® we shall focus on the theoretical side. As far as comparison
with simulations is intended, we shall provide a mesoscopic picture to place
into a coherent analytical context these two phase transitions. Next, we
propose a continuum mesoscopic theory in the spirit of Section 2. We first
discuss the equilibrium case E=0. Jumps in this model can be naturally
divided into two types: in-layer jumps and inter-layer jumps. So, the follow-
ing notation will prove to be convenient: we shall refer to ¢,(r) and ¢,(r)
as the coarse grained density field in plane one and two respectively, and
an arbitrary global configuration will be termed C={¢,(r), ¢,(r)}. We
shall denote C7™ the configuration after an exchange of density ez is per-
formed in the a direction with an infinitesimal neighbour of r in plane i.
Exchanges between planes will lead to configurations named C7*. More
specifically,

Crllra — {¢1(X) —|—877an 5(X - r); ¢2(X)}
CH = {1(x), ¢2(x) +enVy o(x —1)} 32
™ = {§1(X) +end(x — 1), §o(X) — end(x — 1)}

With this understood, then the following master equation can be written
down,

0,P(C)=} fdr dn fiN{W[CT™ — CT P,(CT) = W[C— CT™] P(C)

a

+ WLCY — C] P(CY) = W[ C— C§™] P(C)}

+fdr dn fip{W[C™" > C]1 P(C"") = W[C— C""] P,(C)}
(33)

W[C— C'] has its usual meaning, ie., W[C— C']=D(H(C')— H(C))
and H(C) is again the Hamiltonian (4). The calculus towards a Fokker—
Planck equation can be carried out as we did in Section 2, the only dif-
ference being the inter-layer current term. One can easily get
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s [ax (v N enz0) pC
=22 r( '“5¢i(r)>{£ (A9) PAC)

i=1 a

AL sam) PO

+ [ar <V12 ¢‘i> {sh ju2) PAC) + 82—2e(/112) <V12 qS(ér)> P,(C)}
(34)

We now explain our notation. The first term in this equation models two
decoupled Ising lattice gases with appropiate constraints. As for the second
one, it is simply a “discrete” version of the former, as long as it has to be
with exchanges across the layers. Thus, 1) has the same meaning as in
Section 2, but restricted to plane i. The functions /4 and e are also defined
as in the previous section. With V,,(d/d¢) we simply denote the operator

0 _ 0
0¢(r)  Oy(r)

and 4, stands for (V,,(6/0¢)) H(C). Turning the drive on, one only has to
move A% into 4 thereby taking into account the effect of the electric field.
A Langevin equation can then be derived following the same lines of
Subsection 2.2. One gets

8,91(r) = — Iy, — Te(h) 2 U(r, 1) + Y. Vo [M(AD) +e(AD) 2 (D (x, 1)]
‘ (35)
0,92(x) =y + Te(A12) 2 U(r, 1) + YV, [H(AP) + e(AP) 2 (P (x, 1)]

¢ and {{? are gaussian white noises while 7" is a hand introduced transport
coefficient that measures the rate at which the system changes due to the
inter-layer exchange mechanism.

Bearing density conservation in mind, we introduce two new fields:

m(x)= (1 +¢,)/2,  @(x)=(¢1—¢,)/2 (36)

Equations (35) are easily expressed in terms of the new fields m(x) and
¢(x). Now, simulation results hint at which field will be treated as an order
parameter. We shall take m(x) as the ordering field for the DLG type
transition, the one that occurs at a higher temperature. Then, in a naive
dimensional analysis there is much freedom to choose the scale of observa-
tion. We perform the following scale transformation: ¢ — u =%, r— u~°r,
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@ — u’p, and m — u’m. In particular, if we fix the exponents z=4, =1,
0=d/2 and y=(d—2)/2, it can be easily checked that, after neglecting
terms that are irrelevant in the renormalization group sense, we are left
with nothing but Eq. (22) for the C-DLG. Hence, the critical properties
belong to the C-DLG universality class, a picture consistent with simula-
tions.

Turning next to the second transition, we consider ¢ as a non-conserved
order parameter. We propose a critical theory naively consistent with z =2,
oc=1, 0=(d—2)/2 and y=d/2. This scaling leaves us with a couple of
equations that take the form:

h'(0 th'(E
(1200 ()

4 8 g
7lud 4€(p3 dzzq)mi/ )¢

Om=1(N(0)4, +H(E)4,) m —ui=?

(1'(0) 4, + 1 (E) 4))(9’m)

N |og

_'u(d—2)/2Ehr(E) V”mz_ﬂ(d—G)/ZEh/(E) V”(pz

VD) TV +LE) + /) Vi + ) (37)

We have dropped all terms that give a negligible contribution in the limit
1 — 0. Due to the electric field, which singles out a lattice axis, all gradient
terms have become anisotropic. The situation is then very much reminis-
cent of the driven lattice gases with repulsive interactions.!® We have an
electric field E that has an effect on the phase transition only through an
auxiliary non-ordering field m(x). The naive dimension of E turns out to
be (d—2)/2, in contrast to (d—8)/2 (Section 2.3), so it is highly irrelevant
compared to gg3. We note that essentially the same set of equations results
in ref. 16, so our analysis of (37) will follow the same lines of this reference.
That is, E is naively irrelevant for the Gaussian fixed point until d is lower
than two. We conjecture that E is not relevant to the Wilson—Fisher fixed
point for d<4, so the unique effect of the drive consists in generating
anisotropies. It should be noted that the field m(x) does not order, so we
do not need to keep track of it as far as critical behaviour is concerned.
Thus, the critical properties for the two-layer driven lattice gas are given by
the Langevin equation for ¢(x) and they fall into the Ising universality
class. However, corrections to order O(E?) show that g and ¢ decrease to
an amount that depends on FE. Eventually, both of them may vanish
simultaneously, a mechanism that would be liable for a tricritical point.
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Then, in qualitative agreement with simulations, the transition would be
discontinous for E beyond a critical field value. Interestingly enough, it
could be worked out the dependence of the transition temperature on the
dynamics.

4. SUMMARY AND CONCLUSIONS

Here, we take stock of what we have done. Section 1 outlines the task
undertaken in this article: to arrive at a field theoretic description of the
DLG model and to show how this description explains why the DLG, and
three models intimately related to it, have the various properties that they
exhibit. Inspired by the dynamics at the microscopic level, we were able to
postulate a master equation in continuous space which characterizes a
model we have called C-DLG. The goal of the avenue we have pursued was
to take into account the microscopic details, an effort towards disentangling
the role of dynamics in non-equilibrium critical behaviour. An expansion
of the continuous master equation was then possible due to the factor Q¢
a remnant of a coarse graining over the underlying lattice. The role of the
factor Q¢ can only be fully appreciated noticing that all dependence on the
dynamics relies on it. Then, the full Langevin equation for the C-DLG was
derived. The richness of Eq. (18) was brought to fruition when viewed on
different length scales, leading to the emergence of distinct critical theories.
In particular, we have recovered the Langevin equation of reference® after
considering an anisotropic scale transformation (¢ =2). This result, inter-
esting though it is, is unsatisfactory because the case E = co, which is with
few exceptions the most studied one, was carried out explicitely the result
being a trivial equation. The situation became more transparent after we
resorted to the detailed dependence of the coefficients on the microscopic
dynamics: the choice ¢ =2 makes no sense, as it was seen in Section 2.
Following well honed arguments'”) that invoke a single effective correla-
tion length, we have turned to the choice o = 1. Possibly against intuition,
different critical behaviour has been found for the finite £ and E = oo cases.
The upper critical dimension associated with the former is d.=8 whereas
the latter is characterized by d, =4, thereby in either case yielding an
universality class other than that obtained in ref. 9.

In a subsequent section we have provided three examples of the
applicability of our methods in the shape of the two-temperature model,
the random driven lattice gas and the driven bi-layer lattice gas. A Langevin
equation identical to the one associated with the infinitely driven C-DLG
has resulted for our continuum version of the two-temperature model
(named C-TT) with T|;= co in a derivation that runs along the same lines
of Section 2. The finite 7, case has also been studied. Different critical
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behaviour from the 7}, = oo case has been found. Remarkably, the C-DRLG
model with finite averaged external field has resulted in a Langevin equa-
tion identical to that associated with the two-temperature model with T,
finite, whilst the C-RDLG with an infinite averaged driving field was
proved to belong to the same universality class of the infinitely driven
C-DLG. Summing up, we conclude that the infinitely driven C-DLG, the
C-TT model with T =00 and the C-RDLG with infinite drive, are
described by the same Langevin equation. On the other hand, the two-tem-
perature model with finite 7| and the C-RDLG with finite averaged field
belong into the same universality class.

In the last part of Section 3 we have tackled with the two-layer driven
lattice gas. A viable explanation for the two transitions exhibited in this
model has been provided in the frame of field theory. Again, the election
o =1 has proved to suffice our purposes, i. e. the understanding of collec-
tive behaviour in these systems.

Despite the Langevin equations of refs. 9 and 12, for example, yield a
sizable number of analytical results, in our opinion the new ones exhibited
in this paper deserve study in its own right. It is not only that we dissent
from the standard approach, but the complex behaviour displayed in this
far from equilibrium scenario persuades and compels us to explore new
directions. We believe that the models under the prefix C- that we have
introduced capture the essential properties of the discrete ones in the large-
scale long-time limit. No doubt, much work is still to be done as more
detailed studies on these subjects would be highly desirable.

APPENDIX A. FORMAL DEVELOPEMENTS
Supose that F is a functional of a function ¢(x). If ¢ changes to ¢ + d¢,

then a Taylor series expansion can formally be written down

oF
FIg+09)=F($) + [ dey 557 00(x1)

1 O%F
+3 j dxy dx; Op(xy) Op(xy) + - (38)

$(x1) 69(x,)

where dF/d¢ means the functional derivative of F(¢) with respect to ¢(x).
Now, we explicitely treat the case we are concerned with, namely

Sp =&V, o(x—r) (39)
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In such a case it inmediately follows that

_ O"F¢)
0(xy) -+ 09(x,)
X&'V, 0(x;—r)---V, d(x,—r)

F+09)=F) + 3 [dy -,

n n 5
o+ 2 I fana st gist ro
(—e&)" o\
g pr <Vr 5¢(V)> F(¢) (40)
The operator (V,(/0¢)) satisfies
0N w o (OF@)\ 4
<Vr 5¢> F(¢)—Vr<5¢(r)>—5¢(r) (V.F(¢)) (41)

which can be better proved by putting the last expression in a lattice.
Finally, the usual properties of functional derivatives can be applied, v.g.

0

(%, 55 ) O P =) (v, 5

5 )+ E) (7, 5 Fi)

op(r) (42)

APPENDIX B. FOKKER-PLANCK AND LANGEVIN EQUATIONS
FOR SYSTEMS WITH CONSERVED ORDER
PARAMETER

A Langevin equation with conserved order parameter has the general
form

0,(x, )= V. [ fuld, X) + ga(dh, X) {o(x, 1)] (43)

{, being a Gaussian white noise: <{{,(x, ) {(x', 1)) =0, »0(x—x")x
o(t—1t"); <L,x,t)>=0. Let us introduce a time discretization. Then

¢n+l_¢n+gzv [fa ¢n’ +ga(¢n’ ) a,n] (44)

where ¢, —> ¢, and ¢, =ne > t when ¢ > 0 and n — oco. A factor ¢ has been
absorbed into the noise and we are using the Ito prescription.
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The probability that the system is in the configuration ¢, () at time
t,.1 1s given by

Pacilbyei)= ([, P8 805,) ) (45)
00 17 Yn
Sy %08y~ )+ [y P o3 v, [ g1
1 50 s1—b)
by L S

NS ISt P )

The calculus now reduces to noise averages. An intermediate step is

NPy -z jdxl [PV, 1]

52

1
+3 Javde

< PTV, Ve (0 )| @)

and after a bit of algebra, applying the results of Appendix A, our final
result reads

=% [ (%o g )| o3 (o ) 2| 9
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